LIGHT AND THE QUANTUM MODEL

WAVES

- <u>Wavelength</u> (λ) length of one complete wave
- <u>Frequency</u> (v) # of waves that pass a point during a certain time period
 - hertz (Hz) = 1/s
- <u>Amplitude</u> (A) distance from the origin to the trough or crest

EM SPECTRUM

G

Η

Ν

E

R

G

Y

EM SPECTRUM

0

W

Ν

E

R

G

Y

 \mathbf{H} G Η E Ν R G Y

EM SPECTRUM Frequency & wavelength are inversely proportional

c: speed of light $(3.00 \times 10^8 \text{ m/s})$ λ : wavelength (m, nm, etc.) ν : frequency (Hz)

PHOTON

- A discrete particle of pure light, or electromagnetic radiation energy
- A quantum of energy (bundle, packet)
- Einstein postulated the existence of the **photon** to explain the "photoelectric effect" for which he obtained the Nobel prize in physics. In the photoelectric effect individual photons can liberate **electrons** and stimulate a current, demonstrating the particle-like nature of light.

A PHOTON CHECKS INTO A HOTEL AND IS ASKED IF HE NEEDS ANY HELP WITH HIS LUGGAGE.

"NO, I'M TRAVELLING LIGHT."

QUANTUM THEORY The energy of a photon is proportional to its frequency.

- E: energy (J, joules)
- h: Planck's constant (6.6262 \times 10⁻³⁴ J·s)
- v: frequency (Hz)

- Planck (1900)
 - <u>Observed</u> emission of light from hot objects
 - <u>Concluded</u> energy is emitted in small, specific amounts (quanta)

<u>Quantum</u> - minimum amount of energy change

• Planck (1900)

Classical Theory

Quantum Theory

• Einstein (1905)

• <u>Observed</u> - photoelectric effect

PHOTOELECTRIC EFFECT

• The emission of electrons from a metal when light shines on it.

http://www.daviddarling.info/encyclopedia/E/Einstein_and_photoelectric_effect.html

- Einstein (1905)
 - <u>Concluded</u> light has properties of both waves and particles

"wave-particle duality"

<u>Photon</u> - particle of light that carries a quantum of energy

ATOMIC SPECTRA

- <u>White light is made up of all the colors of the</u> visible spectrum.
- Passing it through a prism separates it.

http://www.astro.virginia.edu/class/oconnell/astr130/lec8-f02.html

NOT ALL LIGHT IS THE SAME

- By heating a gas with electricity we can get it to give off colors.
- Passing this light through a prism does something different.

http://chemed.chem.purdue.edu/genchem/topicreview/bp/ch6/bohr.html

ATOMIC SPECTRUM

- Each element gives off its own characteristic colors.
- Can be used to identify the element.
- This is how we know what stars are made of.

http://chemed.chem.purdue.edu/genchem/topicreview/bp/ch6/bohr.html

WHAT CAUSES THE LINES?

 As an electron drops from an excited state to a lower state, it releases energy in the form of light.

http://en.wikipedia.org/wiki/Bohr_model

ATOMIC SPECTRUM

Line spectrum of the Hydrogen atom

THE HEISENBERG UNCERTAINTY PRINCIPLE

- We know that:
 - Light is required to "see" electrons.
 - Photons are small "packets" of light.
 - Electrons are affected by photons.
 - When electrons absorb photons, they are physically moved to a new location.
- Therefore: It is impossible to know (or determine) both the position and the velocity of an electron.
 - This is known as The Heisenberg Uncertainty Principle.
 a node
 b.

THE SHRÖDINGER WAVE EQUATION

- Combining Bohr's model with de Broglie electronwave theory, Shrödinger came up with an equation that predicted the probability of where an electron would be around the nucleus.
- Electrons were no longer in energy levels, but in complex patterns, or *clouds*.

QUANTUM NUMBERS AND ORBITALS

- Quantum Numbers specify properties of atomic orbitals *and* the properties of the electrons in the orbitals.
- There are 4 different quantum numbers:
 - 1. The Principal Quantum Number: Indicates the main energy level
 - 2. Angular Momentum Quantum Number: Indicates the shape of the orbital
 - **3.** Magnetic Quantum Number: Indicates the orientation of the orbital around the nucleus (3-dimensional orientation)
 - 4. Spin Quantum Number: Indicates the spin state of the electron.

PRINCIPAL QUANTUM NUMBER

- Energy Level occupied by the electron.
- Symbol: *n*
- Values: 1, 2, 3, ...
- Example:
 - Electron in energy level 2 has an n = 2.

ANGULAR MOMENTUM QUANTUM NUMBER

- Shape of the orbital
- Symbol: *l* (italicized "l")
- Values: 0 through *n*-1
- Example:
 - An electron with an n = 2 can have $\ell = 0$ or 1
 - An electron with an n = 5 can have an l = 0, 1, 2, 3, or
 4

- $\ell = 2 \rightarrow d$ orbital
- $\ell = 3 \rightarrow f$ orbital

MAGNETIC QUANTUM NUMBER

- Each individual orbital can have different orientations around the nucleus
- Symbol: *m*_ℓ
- Values: *l* to + *l*
- Example:
 - An electron with an $\ell = 0$ can only have $m_{\ell} = 0$
 - An electron with an ℓ = 2 can have m_{ℓ} = -2, -1, 0, 1, 2

ORBITAL LOCATION ON PERIODIC TABLE

1s		1s
2s		2р
3s		Зр
4s	3d	4p
5s	4d	5р
6s	5d	6р
7s	6d	7р

MAGNETIC QUANTUM NUMBER

 $\ell = 0$; s orbital

 $\ell = 1$; p orbital

 $\ell = 2$; d orbital

 $\ell = 3$; f orbital

SPIN QUANTUM NUMBER

- Spin state of the electron
- Symbol: N/A
- Values: $-\frac{1}{2}$, $+\frac{1}{2}$ for *any* orbital or value of ℓ .

QUANTUM NUMBERS FOR THE FIRST FOUR LEVELS IN THE HYDROGEN ATOM

n	l	Orbital Designation	m _e	Number of Orbitals
1	0	1s	0	1
2	0	2s	0	1
	1	2р	-1,0,+1	3
3	0	3s	0	1
	1	3р	-1,0,+1	3
	2	3d	-2,-1,0,+1,+2	5
4	0	4s	0	1
	1	4p	-1,0,+1	3
	2	4d	-2,-1,0,+1,+2	5
	3	4f	-3,-2,-1,0,+1,+2,+3	7

ELECTRON CONFIGURATIONS

- The arrangement of electrons in their orbitals around the nucleus of an atom is called the electron configuration.
- There are 3 Rules for determining the electron configuration:
 - The Aufbau Principle states that electrons will always occupy the lowest energy orbital that is available (ground state).
 - The Pauli Exclusion Principle also states that any two electrons in the same atom cannot have the same set of quantum numbers.
 - Hund's Rule states that, in orbitals of equal energy, electrons will first occupy different orbitals before pairing up.

BOHR MODEL VS. WAVE MECHANICAL MODEL

ORBITAL ENERGIES

- In general, the energy of the different energy levels increase as *n* increases, so electrons will start at level 1 and move up.
- However, different orbitals within an energy level can overlap other energy levels.

http://www.chem1.com/acad/webtext/atoms/atpt-5.html

ORBITALS FILL IN AN ORDER

- Lowest energy to higher energy.
- Adding electrons can change the energy of the orbital. <u>Full orbitals</u> are the absolute best situation.
- However, <u>half filled</u> orbitals have a lower energy, and are next best
 - Makes them more stable.
 - Changes the filling order

BY ENERGY LEVEL

- First Energy
 Level
- Has only s orbital
- only 2 electrons
 1s²

- <u>Second Energy</u>
 <u>Level</u>
- Has s and p orbitals available
- 2 in s, 6 in p
 2s²2p⁶
- 8 total electrons

BY ENERGY LEVEL

- Third energy
 level
- Has s, p, and d orbitals
- 2 in s, 6 in p, and
 10 in d
- $3s^23p^63d^{10}$
- 18 total electrons

- Fourth energy level
- Has s, p, d, and f orbitals
- 2 in s, 6 in p, 10 in d, and 14 in f
- $4s^24p^64d^{10}4f^{14}$
- 32 total electrons

EXCEPTIONS

- The d orbital "likes" to be full with either 5 or 10 electrons.
 - Cr should have an electron configuration of 1s²2s²2p⁶3s²3p⁶4s²3d⁴

Instead, one electron is transferred from the 4s orbital to the 3d orbital so it is $\frac{1}{2}$ full.

 $1s^{2}2s^{2}2p^{6}3s^{2}3p^{6}4s^{1}3d^{5}$

THE EASY WAY TO REMEMBER

7s 7p 7d 7f 6s 6p 6d 6f 5s 5p 5d 5f 4s 4p 4d 4f 3s 3p 3d <u>2</u>s 2p

•
$$1s^2$$

7s 7p 7d 7f 6s 6p 6d 6f 5s 5p 5d 5f 4s 4p 4d 4f 3s 3p 3d 2s 2p

7s 7p 7d 7f 6s 6p 6d 6f 5s 5p 5d 5f 4s 4p 4d 4f 3s 3p 3d ZS

•
$$1s^2 2s^2 2p^6 3s^2$$

7s 7p 7d 7f 6s 6p 6d 6f 5s 5p 5d 5f 4s 4p 4d 4f 3s 3p 3d Δ

Lets do this for Hassium (atomic Number 108)

•
$$1s^2 2s^2 2p^6 3s^2$$

 $3p^6 4s^2$

• 20 electrons

7s 7p 7d 7f 6s 6p 6d 6f 5s 5p 5d 5f 4d 4f 4s40乙

Lets do this for Hassium (atomic Number 108)

• $1s^2 2s^2 2p^6 3s^2$ $3p^6 4s^2 3d^{10} 4p^6$ $5s^2$

• 38 electrons

7s 7p 7d 7f 65 6p 6d 6f 5s 5p 5d 5f **4**d 4f 48 42

Lets do this for Hassium (atomic Number 108)

• $1s^2 2s^2 2p^6 3s^2$ $3p^6 4s^2 3d^{10} 4p^6$ $5s^2 4d^{10} 5p^6 6s^2$

• 56 electrons

7s 7p 7d 7f 65 6p 6d 6f 5s 5p 5d 5f 42 4 4s40

- $1s^2 2s^2 2p^6 3s^2$ $3p^6 4s^2 3d^{10} 4p^6$ $5s^2 4d^{10} 5p^6 6s^2$ $4f^{14} 5d^{10} 6p^6 7s^2$
 - 88 electrons

7d 7f <u>18</u>78 ốp ốd 6f ÓS 5s 5p 5d 5f 4s40 **4**0 41 40

Lets do this for Hassium (atomic Number 108)

• $1s^2 2s^2 2p^6 3s^2$ $3p^6 4s^2 3d^{10} 4p^6$ $5s^2 4d^{10} 5p^6 6s^2$ $4f^{14} 5d^{10} 6p^6 7s^2$ $5f^{14} 6d^{10} 7p^6$

• 108 electrons

ORBITAL FILLING DIAGRAM

NOTATION

Electron Configuration S 16e⁻ 1s² 2s² 2p⁶ 3s² 3p⁴ Core e Valence e Inner Shell **Outer Shell**

NOTATION

- Noble Gas Configuration
 - Keep only valence e⁻
 - Use previous Noble Gas

S 16e⁻ [Ne] 3s² 3p⁴

• Atomic Radius

Atomic Radius

Increases to the LEFT and DOWN

- Why larger going down?
 - Higher energy levels have larger orbitals
 - <u>Shielding</u> core e⁻ block the attraction between the nucleus and the valence e⁻
- Why smaller to the right?
 - Increased nuclear charge without additional shielding pulls e⁻ in tighter

First Ionization Energy: energy required to remove one e⁻ from a neutral atom.

• First Ionization Energy Increases UP and to the RIGHT

- Why opposite of atomic radius?
 - In small atoms, e⁻ are close to the nucleus where the attraction is stronger

 Stable e⁻ configurations don't want to lose e⁻

© 1998 LOGAL

Successive Ionization Energies

Large jump in I.E. occurs when a CORE e⁻ is removed.

IONIC RADIUS

© 2002 Prentice-Hall, Inc.