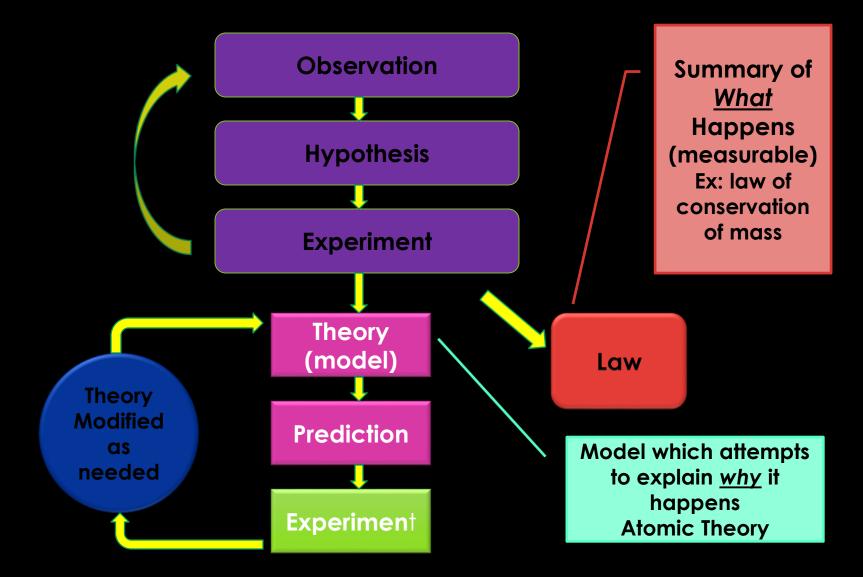

CHEMICAL FOUNDATIONS

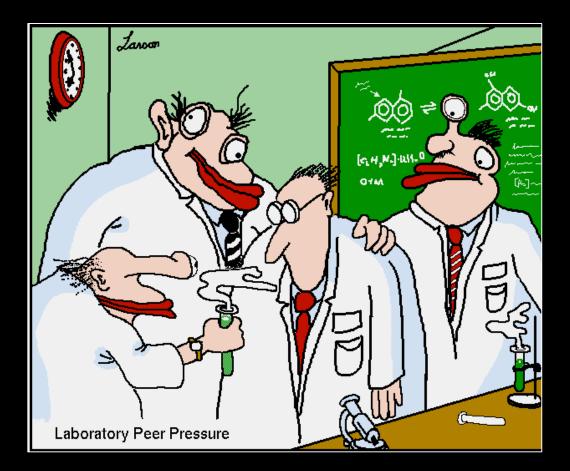
WHY IS CHEMISTRY IMPORTANT?

- New materials
- New pharmaceuticals
- New energy sources
- Food supplies
- Help the environment
- Can you think of others?



WHAT IS CHEMISTRY?

Chemistry is a central science that deals with the materials of the universe and the changes they undergo.


THE SCIENTIFIC METHOD

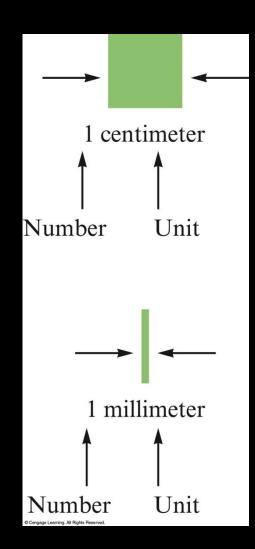
TYPES OF OBSERVATIONS

Qualitative	Quantitative
Overview: • Deals with descriptions • Data can be observed but not measured • Colors, textures, smells etc. •QualitativeQuality	Overview: • Deals with numbers • Data which can be measured • Length, Height, volume, weight, speed, time, temp • QuantitativeQuantity
Example: Oil Painting • Blue & green paint • Gold frame • Masterful brush strokes	Example: Oil Painting • 10" x 14" • surface area 140 in ² • Weight: 8.5 pounds

QUALITATIVE OBSERVATIONS

TED TALK: YOU HAVE NO IDEA WHERE CAMELS REALLY COME FROM

Qualitative
 Observations


Quantitative Observations

Talk with your table partner and write a list of 5 qualitative and 5 quantitative observations Dr. Rybczynski and her colleagues used to solve the puzzle of the bone fragments found in the High Arctic Fyles Leaf Bed.

MEASUREMENTS IN CHEMISTRY

Quantitative observation.

- Has 2 parts number and unit.
- Number tells comparison.
- Unit tells scale.

MEASUREMENTS IN CHEMISTRY (CON'T)

Scientific Notation

- Technique used to express very large or very small numbers.
- Move the decimal so that one non zero integer is to left
 - If you moved to the left then the exponent is positive (number is big)
 - If you moved to the right then the exponent is negative (number is small)

 $\begin{array}{ll} 93,000,000 = 9.3 \times 10,000,000 = 9.3 & \times 10^{7} \\ & \text{Number} & \text{Appropriate} \\ & \text{between} & \text{power of 10} \\ 1 \text{ and 10} & (10,000,000 = 10^{7}) \end{array}$

Units of Measurement

SI System (Système International d'Unités) > units derived from the metric system.

Physical Quantity	Name of Unit	Abbreviation
Mass	Kilogram	kg
Length	Meter	m
Time	Second	S
Temperature	Kelvin	k
Electric Current	Ampere	А
Amount of substance	Mole	mol
Luminous intensity	Candela	cd

Units of Measurement

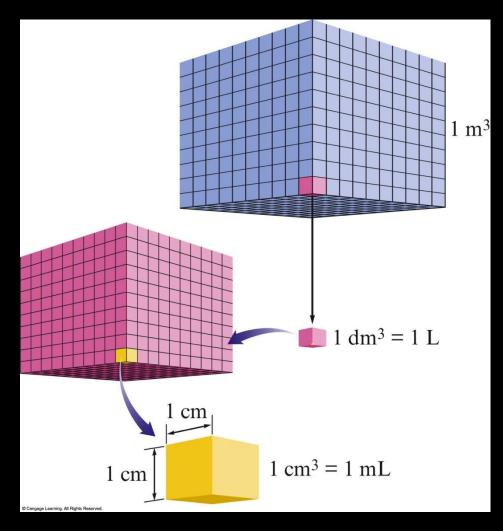
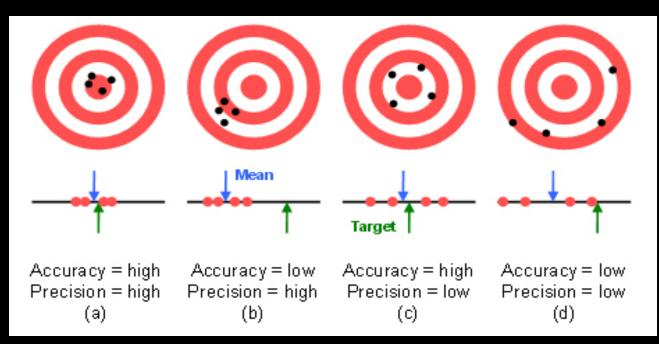
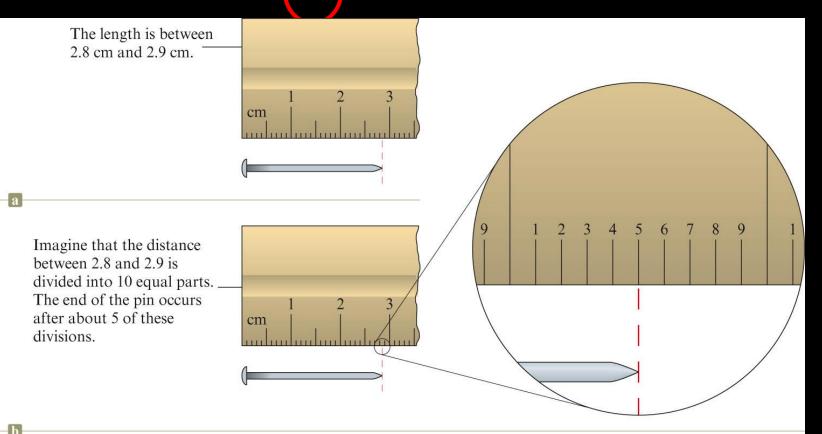

• Prefixes are used to change the size of the unit.

Table 2.2 The Commonly Used Prefixes in the Metric System

Prefix	Symbol	Meaning	Power of 10 for Scientific Notation
mega	М	1,000,000	10 ⁶
kilo	k	1000	10 ³
deci	d	0.1	10 ⁻¹
centi	с	0.01	10 ⁻²
milli	m	0.001	10 ⁻³
micro	μ	0.000001	10 ⁻⁶
nano	n	0.00000001	10 ⁻⁹


Volume

- Measure of the amount of 3-D space occupied by a substance.
- SI unit = cubic meter (m³)
- Commonly measure solid volume in cm³.
- $1 \text{ mL} = 1 \text{ cm}^3$
- $1 L = 1 dm^3$


Precision and Accuracy

- Accuracy: agreement of a particular value with the accepted value.
- **Precision**: agreement among several measurements of the same quantity (reproducibility).

Uncertainty in Measurement (2.4)

- The length of the pin occurs at about 2.85 cm.
 - Certain digits: 2.8 5
 - Uncertain digit: 2.8 5



Uncertainty in Measurement (2.4)

• Volume of a container

Certain digits: 20.1 5 ml

Uncertain digits: 20.1 (5 ml

FIGURE 1.9

Measurement of volume using a buret. The volume is read at the bottom of the liquid curve (called the meniscus).